Gascous State

- The atmosphere that surrounds us is composed of a mixture of gases (air)
- The air we breath consists primarily of
- oxygen (about 21 \%)
- nitrogen (about 78 \%)
- Industrial and household uses of gases:
- To purify drinking water
- Welding
- Semiconductors
hydrogen chloride, hydrogen bromide
- A substance that is normally in the gas state at ordinary temp. and pressure
-oxygen gas
- Vapor: The gaseous form of any substance that is a liquid or solid at normal temp. and pressure
- water vapor or steam
- The gas phase is the normal state for eleven of the elements
$-\mathrm{H}_{2}, \mathrm{~N}_{2}, \mathrm{O}_{2}$, and noble gases
- Gases have no definite shape or volume and completely fill the container that holds them Gases can be compressed to a smaller volume or expanded to a larger volume
- The behavior of gases can be described by simple quantitative relationships:
- Only behavior of gases can be described by these simple quantitative relationships
The gas laws are mathematical equations that predict how gases behave
- Why do they behave in a predictable manner?
-Why does a gas expand when its temperature is increased?
- A model has been proposed to understand the physical properties of gases

- A mathematical model to explain the behavior of gases (the properties of an "ideal gas")
- The theory of moving molecules. It gives an understanding of pressure and temperature at a molecular level
- Gases are made up of tiny particles (atoms or molecules) widely separated from one another and in constant rapid motion
- The particles have no attraction or repulsion for one another
- The particles of a gas are extremely small compared to the total volume which contains them: A gas is mostly empty space
- The average kinetic energy (motion) of the gas particles is proportional to the temperature of the gas (in Kelvin)
- Particles are in
constant, random straight-line motion, colliding with each other and the container walls (causing pressure)

Gas laws are generalizations that describe mathematically the relationships of these four properties:
-Pressure (P)
-Volume (V)
-Temperature (T)
-Amount of gas in moles (n)

- A gas exerts pressure as its molecules collide with the surface of the container that holds it
- The pressure is the result of these collisions (impacts) divided by the unit area receiving the force

$$
P=\frac{\text { force }}{\text { area }}
$$

- The atmosphere exerts pressure on the earth by the collisions of molecules with every surface it contacts

Caused by air being pulled towards

 earth by gravity- Weather can change pressure
-Lows and Highs on the weather map
Altitude can change pressure
-Atmospheric pressure is lower in Denver than in Stockton because of "thinner air" due to less collisions of gas with surfaçe

The volume of a gas depends on

1. The pressure of the gas
2. The temperature of the gas
3. The number of moles of the gas

The volume of a gas is expressed in $m \mathrm{~L}$ and L

- Temperature of the gas is related to

 the KE of the molecule- The velocity of gas particles increases as the temp. increases

When working problems, temperature is expressed in Kelvin not Celcius

- Gases are usually measured in grams
- Gas law calculations require that the quantity of a gas is expressed in moles
- Moles of a gas represents the number of particles of a gas that are present

When working gas law problems, convert mass (in grams) to moles

Use a device called a barometer -Measures the height of Hg in a glass tube
-Invented in 1643 by Torricelli
-Units are in mm Hg
Common Units
-mm Hg or Torr ($1 \mathrm{~mm} \mathrm{Hg}=1$ Torr)
-Atmospheres (atm) 1 atm = 760 Torr
-Pascal (Pa) 1 atm = 101,325 Pa

- Use a barometer
- Measure the height of a column of mercury (in mm)
- The pressure of the atmosphere supports the column of mercury
- The length of mercury in the column is a measure of the pressure
- At sea level, the mercury would be 760 mm above the surface of the table

- Pressure depends on
-The collisions of gas molecules with the walls of the container
-The number of collisions
-The average force of the collisions

Pressure and Volume

- Boyle, R. discovered the relationship between gas pressure to gas volume

If the pressure on the gas increases,
then volume decreases proportionally

- As long as I and n are constant
- As the volume decreases, more collisions with the walls occur (less space), so
pressure increases
- Determined this from observations, not the theory
- Only pressure and volume are allowed to change
- Inverse relationship between P and V
- The temperature and the amount of gas (n) are held constant

$\mathrm{p} \propto \frac{1}{\mathrm{~V}} \mathrm{pV}=\mathrm{k}$
$P_{1} V_{1}=P_{2} V_{2}$
- Charles, J. found that the volume of any gas will increase with an increase in temperature
- The volume of a sample of gas is directly proportional to its temperature (K)
- As long as P and n are held constant
- What happens when temperature increases?
-Increase speed of molecules
-Increase force with which they hit the walls
- If volume can change
-Force "stretches" out its container until it ends up with the same pressure it had before, just a larger volume
- Volume and temperature are proportional (if pressure and amount of gas is constant)
- Increase temperature, volume increases
- Decrease temperature, volume decreases

- If we could cool down a gas enough, its volume would reduce to zero
- Absolute Zero (0 Kelvin)
- Theoretical only because at a low enough temperature, a gas will liquify

- Gay-Lussac, J. L. discovered the relationship between gas pressure and temperature of a gas
The pressure of a sample of gas, at a constant volume, is directly proportional to its temperature (K)
- As long as V and n are constant $P \propto T$
- By KM theory, as the temperature increases, the speed of the gas molecules increases
- By KM theory, as the temperature increases, the speed of the gas molecules increases
- Increase in the number of collisions the molecules have with the container wall
- Thus, an increase in

- Liquids are constantly evaporating
- Molecules at the surface of the liquid will break away from the liquid and enter into the gas phase
- But in a closed container the molecules cannot escape to the atmosphere

- At a certain point molecules will continue to evaporate and at the same rate molecules will return to the liquid
- At equilibrium the rates of vaporization and condensation are equal

Liquid to Gas = Gas to Liquid

- Vapor Pressure of a liquid is the pressure exerted by its vapor at equilibrium
- The vapor pressure of a liquid will increase with increase in temperature
- The normal boiling point of a liquid is the temperature at which its vapor pressure equals the atmospheric pressure
- An increase in altitude will lower the atmospheric pressure so liquids will boil at a lower temperature
- An expression which combines Boyle's, Charles's, and Gay-Lussac's Law

$$
\frac{P_{1} V_{1}}{T_{1}}=\frac{P_{2} V_{2}}{T_{2}}
$$

- Applies to all gases and mixtures of gases
- If five of the six variables are known, the sixth can be calculated
- Avogadro proposed the relationship between volume and a quantity of gas (in moles, n)
- Equal volumes of two different gases at the same temperature and pressure will contain the same number of molecules

The volume of a gas varies directly with the number of moles of gas as long as the pressure and temperature remain constant

- If you increase (double) the number of moles, you increase (double) the volume
- If the number of molecules is cut in half, the volume will be cut in half
- More molecules push on each other and the walls, "stretching" the container and making it larger until the pressure is the same as before

$$
\begin{aligned}
& \mathrm{V} \propto \mathrm{n} \frac{\mathrm{~V}_{1}}{\mathrm{n}_{1}}=\frac{\mathrm{V}_{2}}{\mathrm{n}_{2}}
\end{aligned}
$$

- Gas volumes can only be compared at the same T and P
- The universally accepted conditions are $\mathrm{T}=0^{\circ} \mathrm{C}$ and $\mathrm{P}=1.00 \mathrm{~atm}$

Standard Temperature and Pressure $=$ STP Standard Temperature $=0^{\circ} \mathrm{C}(\mathbf{2 7 3} \mathrm{K})$ and Standard Pressure $=1.00 \mathrm{~atm}(760 \mathrm{mmHg})$

- The volume of one mole of any gas at STP is 22.4 L
- Known as the standard molar volume
- When used in calculations at STP, the conversion factor(s) can be used:

$\frac{1 \mathrm{molgas}}{22.4 \mathrm{~L}}=\frac{22.4 \mathrm{~L}}{1 \mathrm{molgas}}$

At the same \mathbf{T} and \mathbf{P}, one mole of any gas will occupy the same volume

- At STP, the density of a gas depends on its molar mass
- The higher the molar mass, the greater the density
$-\mathrm{CO}_{2}$ has a higher molar mass than N_{2} and O_{2} so it is more dense than air
- CO_{2} released from a fire extinguisher will cover the fire and prevent O_{2} from reaching the combustible material
- Helium is less dense than air so a balloon filled with helium rises in the air
- The ideal gas law describes the relationships among the four variables: P, T, V, n (moles)
- Derived from the three different relationships concerning the volume of a gas
$v=k \times \frac{1}{P} \quad$ Boyle's Law
n, T constant

Charles's Law
n, P constant
$V=k n$
Avogadro's Law
P, T constant

Combined into a single expression

- The ideal gas law describes the

 relationships among the four variables:P, T, V, n (moles)

- Derived from the three different relationships concerning the volume of a gas
- The usual written form where all three gas laws are put together into one equation
-Combines Boyle's Law, Charles's Law and Avogadro's Law into one relationship

- \mathbf{R} is the gas law constant -Make sure that you use the correct units in the ideal gas law with the correct version of R

$$
\mathrm{R}=8.314 \frac{\mathrm{~J}}{\mathrm{~mol} \cdot \mathrm{~K}} \text { or } 0.0821 \frac{\mathrm{~L} \cdot \mathrm{~atm}}{\mathrm{~mol} \cdot \mathrm{~K}}
$$

- Ideal gas law can be re-arranged to make the equations from Boyle's, Charles's or Avogadro's Laws

- Boyle's Law
-Temperature and number of moles are constant

$$
\begin{gathered}
\mathrm{p}_{1} \mathrm{~V}_{1}=\mathrm{nRT}=\mathrm{p}_{2} \mathrm{~V}_{2} \\
\mathrm{p}_{1} \mathrm{~V}_{1}=\mathrm{p}_{2} \mathrm{~V}_{2}
\end{gathered}
$$

- Charles's Law
-Pressure and number of moles are constant

$$
\frac{\mathrm{V}_{1}}{\mathrm{~T}_{1}}=\frac{\mathrm{nR}}{\mathrm{p}}=\frac{\mathrm{V}_{2}}{\mathrm{~T}_{2}}
$$

$$
\frac{\mathrm{V}_{1}}{\mathrm{~T}_{1}}=\frac{\mathrm{V}_{2}}{\mathrm{~T}_{2}}
$$

- Avogadro's Law
-Pressure and Temperature are constant

$$
\frac{\mathrm{V}_{1}}{\mathrm{n}_{1}}=\frac{\mathrm{TR}}{\mathrm{p}}=\frac{\mathrm{V}_{2}}{\mathrm{n}_{2}}
$$

$$
\frac{\mathrm{V}_{1}}{\mathrm{n}_{1}}=\frac{\mathrm{V}_{2}}{\mathrm{n}_{2}}
$$

- Allow the direct calculation of P, T, V, or n
- If three of the four variables are known, (i.e. P, T, n) the unknown variable, V can be calculated
- Allow the calculation of the molar mass of a gas
Can use in stoichiometric calculations with chemical reactions

Grams A Grams B

Moles A \leftrightarrow Moles B

\mathbf{P}_{A} or V_{A}
P_{B} or V_{B}

- The ideal gas equation is used when three of the four variables are known
- Problems are given with one set of variables given and one missing variable
- Solve Ideal Gas Law by rearranging the equation so that the missing quantity is on one side of the equation and everything that stays constant is on the other

Allows you to calculate a change in one of the three variables (P, V, T) caused by a change in both of the other two variables

1) Determine the initial values
2) Determine the final values
3) Set two equations equal to one another, one for initial values, one for final values
4) Solve for the unknown variable

$$
\frac{\mathrm{P}_{1} \mathrm{~V}_{1} \mathrm{~T}_{2}}{\mathrm{P}_{2} \mathrm{~V}_{2}}=\mathrm{T}_{1}
$$

Chemical

Reactions

- In chapter 8 we used the balanced equation and mass of one reactant to calculate the mass of any other component
- Mass to mass or gram to gram Can also do volume to mass and mass to volume problems where at least one of the components is a gas
- The ideal gas law will relate the moles of a gas to its P, T and V
- In chapter 8 we used the balanced equation and mass of one reactant to calculate the mass of any other component

Mole to mole or gram to gram problems

- In this chapter, where at least one of the components is a gas

Volume to mass and mass to volume problems

- The ideal gas law will relate the moles of a gas to its P, T and V

Ideal Gas Law Example 1

- A balloon is filled with 1300 mol of H_{2}. If the temperature of the gas is $23^{\circ} \mathrm{C}$ and the pressure is 750 mm Hg , what is the volume of the balloon?

$$
\begin{aligned}
& \mathrm{p}=750 \cdot \frac{1 \mathrm{~atm}}{760 \mathrm{ton}^{2}}=0.987 \mathrm{~atm} \\
& \mathrm{n}=1300 \mathrm{~mol} \\
& \mathrm{~T}=23+273=296 \mathrm{~K} \\
& \mathrm{R}=0.082 \frac{\mathrm{~L} \text { •atm }}{\mathrm{mol} \cdot \mathrm{~K}} \\
& \text { p } \\
& \mathrm{V}=\text { ? } \\
& \mathrm{V}=\frac{(1300 \mathrm{mul})(0.082 \underset{\mathrm{~m}}{\mathrm{~L} \cdot \mathrm{mim}} \mathrm{~m})(296 \mathrm{~K})}{(0.987} \\
& \mathrm{V}=31,969.2 \mathrm{~L}
\end{aligned}
$$

Determining the Molar Mass of a Gas

- A 0.105 g sample of gaseous compound has a pressure of 561 mm Hg in a volume of 125 mL at $23.0^{\circ} \mathrm{C}$. What is its molar mass?

$$
\begin{aligned}
& \mathrm{p}=\frac{561 \mathrm{tan}}{-\frac{\mathrm{atm}}{760 \mathrm{rat}}=0.738 \mathrm{~atm}} \\
& \mathrm{~T}=23+273=296 \mathrm{~K} \\
& \mathrm{~V}=125 \mathrm{~mL}=0.125 \mathrm{~L} \\
& \mathrm{~g}=0.105 \mathrm{~g}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{n}=\frac{\mathrm{pV}}{\mathrm{RT}} \\
& \text { (078:n)(0125L) } \\
& \left(008, \text { hatam }^{2}\right)(2961.5 \\
& 17 \angle B \text { सांख } \\
& N N_{\mathrm{ndi}}^{g}=\frac{0105 \mathrm{~g}}{409410^{3} \mathrm{nal}}
\end{aligned}
$$ the following reaction.

$$
\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})
$$

- Suppose you take 355 L of H_{2} gas at $25.0^{\circ} \mathrm{C}$ and 542 mm Hg and combine it with excess \mathbf{N}_{2} gas. What quantity of NH_{3} gas, in moles, is produced? If this amount of NH_{3} gas is stored in a $125 \mathrm{~L} \operatorname{tank}$ at $25^{\circ} \mathrm{C}$, what is the

Ideal Gas Law Example

1) Find the moles of hydrogen using ideal gas law

$$
\begin{aligned}
& \quad \mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g}) \\
& \mathrm{p}=\frac{542 \dot{\operatorname{urr}} \frac{1 \mathrm{~atm}}{760 \mathrm{tur}}=0.713 \mathrm{~atm}}{\mathrm{~V}}=355 \mathrm{~L} \\
& \mathrm{~T}=25+273=298 \mathrm{~K} \quad \mathrm{n}=\frac{\mathrm{pV}}{\mathrm{RT}} \\
& \mathrm{n}=? \\
& \mathrm{n}=\frac{(0.713 \mathrm{atin})(355 \mathrm{~L})}{\left(0.0802 \frac{\mathrm{tam} \cdot \mathrm{~m}}{\mathrm{~mol} \cdot \mathrm{~V}}(298 \mathrm{~K})\right.} \\
& \mathrm{n}=10.59 \mathrm{~mol} \mathrm{H}_{2}
\end{aligned}
$$

2) Determine the moles of ammonia produced using the mole-mole factor in the balanced equation

$$
\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})
$$

3 moles $\mathrm{H}_{2}=2$ moles NH_{3}

Now, combine steps 1 and 2 to calculate moles

$\underline{10.59 \mathrm{~mol} \mathrm{H}_{2}} \left\lvert\, \frac{2 \mathrm{~mol} \mathrm{NH}_{3}}{3 \mathrm{~mol} \mathrm{H}_{2}}=7.06 \mathrm{~mol} \mathrm{NH}_{3}\right.$

3) Calculate the pressure of the ammonia gas

$$
\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})
$$

$$
\begin{aligned}
& \mathrm{T}=25+273=298 \mathrm{~K} \\
& \mathrm{n}=7.06 \mathrm{~mol} \quad \mathrm{p}=\frac{\mathrm{nRT}}{\mathrm{~V}} \\
& \mathrm{~V}=125 \mathrm{~L} \\
& \mathrm{p}=? \\
& \mathrm{p}=\frac{(7.06 \mathrm{~mol})(0.082)(298 \mathrm{~K})}{(125 \mathrm{~L})} \mathrm{p}=1.38 \mathrm{~atm}
\end{aligned}
$$

- A sample of CO_{2} has a pressure

 of 55 mm Hg in a volume of 125 mL . The sample is compressed so that the new pressure of the gas is 78 mm Hg . What is the new volume of the gas? (The temperature does not change in this process.)

$$
\begin{aligned}
& \mathrm{p}_{1}=55 \mathrm{~mm} \mathrm{Hg} \\
& \mathrm{~V}_{1}=125 \mathrm{ml} \\
& \mathrm{p}_{2}=78 \mathrm{~mm} \mathrm{Hg} \\
& \mathrm{~V}_{2}=?
\end{aligned}
$$

$$
\mathrm{pV}=\mathrm{nRT}
$$

$$
\mathrm{V}_{1}=125 \mathrm{ml} \quad \mathrm{p}_{1} \mathrm{~V}_{1}=\mathrm{p}_{2} \mathrm{~V}_{2}
$$

$$
\frac{p_{1} V_{1}}{n_{1}}=V_{2}
$$

$$
\mathrm{p}_{2}
$$

$$
\mathrm{V}_{2}=\frac{(55 \mathrm{~mm} \mathrm{mg})(125 \mathrm{ml})}{(78 \mathrm{~mm} \text { rig })} \quad \mathrm{V}_{2}=88.14 \mathrm{ml}
$$

A balloon is inflated with helium

 to a volume of 45 L at room temperature ($25^{\circ} \mathrm{C}$). If the balloon is cooled to $-10^{\circ} \mathrm{C}$, what is the new volume of the balloon? (Assume that the pressure does not change.)

$\mathrm{T}_{2}=-10^{\circ} \mathrm{C}$
$\mathrm{V}_{2}=$?

$$
\begin{array}{ll}
\mathrm{T}_{1}=25+273=298 \mathrm{~K} & \mathrm{pV}=\mathrm{nRT} \\
\mathrm{~V}_{1}=45 \mathrm{~L} & \frac{\mathrm{~V}}{\mathrm{~T}}=\frac{\mathrm{nR}}{\mathrm{p}} \\
\mathrm{~T}_{2}=-10+273=263 \mathrm{~K} & \mathrm{~V}_{2}=? \\
\frac{\mathrm{~V}_{1}}{\mathrm{~T}_{1}}=\frac{\mathrm{V}_{2}}{\mathrm{~T}_{2}} & \frac{\mathrm{~T}_{2} \mathrm{~V}_{1}}{\mathrm{~T}_{1}}=\mathrm{V}_{2} \\
\mathrm{~V}_{2}=\frac{(263 \mathrm{~K})(45 \mathrm{~L})}{(298 \mathrm{~K})} & \mathrm{V}_{2}=40 . \mathrm{L}
\end{array}
$$

- You have a 22 L cylinder of helium at a pressure of 150 atm and at $31^{\circ} \mathrm{C}$. How many balloons can you fill, each with a volume of 5.0 L , on a day when the atmospheric pressure is 755 mm Hg and the
temperature is $22^{\circ} \mathrm{C}$?

$$
\begin{aligned}
& \mathrm{V}_{1}=22 \mathrm{~L} \\
& \mathrm{p}_{1}=150 \mathrm{~atm} \\
& \mathrm{~T}_{1}=31^{\circ} \mathrm{C}
\end{aligned}
$$

$$
\mathrm{V}_{2}=?
$$

$$
\mathrm{p}_{2}=755 \mathrm{~mm} \mathrm{Hg}
$$

$$
\mathrm{T}_{2}=22^{\circ} \mathrm{C}
$$

$\mathrm{V} / \mathrm{balloon}=5 \mathrm{~L} /$ balloon

$$
\begin{aligned}
& \mathrm{p}_{1}=150 \mathrm{~atm} \\
& \mathrm{~T}_{1}=31+273=304 \mathrm{~K} \\
& \mathrm{~V}_{1}=22 \mathrm{~L}
\end{aligned}
$$

$$
\mathrm{pV}=\mathrm{nRT}
$$

$$
\mathrm{p}_{2}=\frac{755 \div \mathrm{urr}}{\frac{1 \mathrm{~atm}}{760 \pm . \mathrm{rr}}=0.99 \mathrm{~atm} .}
$$

$$
\frac{\mathrm{p}_{1} \mathrm{~V}_{1}}{\mathrm{~T}_{1}}=\frac{\mathrm{p}_{2} \mathrm{~V}_{2}}{\mathrm{~T}_{2}}
$$

$$
\mathrm{T}_{2}=22+273=295 \mathrm{~K}
$$

$$
\mathrm{V}_{2}=?
$$

$$
\frac{\mathrm{p}_{1} \mathrm{~V}_{1} \mathrm{~T}_{2}}{\mathrm{p}_{2} \mathrm{~T}_{1}}=\mathrm{V}_{2}
$$

$$
\mathrm{V}_{2}=\frac{(150 \text { a.tm })(22 \mathrm{~L})(295 \mathrm{~K})}{\left(0.99 \mathrm{a}^{\mathrm{t}} \mathrm{n}\right)(304 \mathrm{~K})}
$$

$$
\mathrm{V}_{2}=3234.6 \mathrm{~L}
$$

$\frac{3234.6 \mathrm{~L}}{} \left\lvert\, \frac{1 \text { balloon }}{5 \mathrm{~L}}=646\right.$ balloons

- Air we breathe is a mixture of nitrogen, oxygen, carbon dioxide, water vapor and other gases
- Each gas exerts a pressure
- Total of all of the pressures is the atmospheric pressure
- In a mixture of gases in a container
-Each molecule moves in the container independently of the others
- Each collides with the container as frequently as if it were the only gas present
- Partial Pressure
-Pressure exerted by an individual gas in a mixture of gases
-The pressure it would exert if were alone under the same conditions
- Dalton's Law: The total pressure for a mixture of gases is the sum of partial pressures of the individual gases
- Each gas behaves independently of any others in a mixture of ideal gases
- P is the total pressure, exerted by the gases in a mixture. It is directly related to $\mathrm{n}_{\text {bud }}$
- $n_{\text {ind }}$ is the sum of the moles of gases in the
 mixture
- Can come up with an equation for $\mathbf{P}_{\text {fodal }}$ for a mixture of gases

$$
\begin{gathered}
\mathrm{p}_{\mathrm{A}}=\frac{\mathrm{n}_{\mathrm{A}} \mathrm{RT}}{\mathrm{~V}} \quad \mathrm{p}_{\mathrm{B}}=\frac{\mathrm{n}_{\mathrm{B}} \mathrm{RT}}{\mathrm{~V}} \quad \mathrm{p}_{\mathrm{C}}=\frac{\mathrm{n}_{\mathrm{C}} \mathrm{RT}}{\mathrm{~V}} \\
\mathrm{p}_{\text {tot }}=\mathrm{p}_{\mathrm{A}}+\mathrm{p}_{\mathrm{B}}+\mathrm{p}_{\mathrm{C}} \\
\mathrm{p}_{\text {tot }}=\mathrm{n}_{\mathrm{A}} \frac{\mathrm{RT}}{\mathrm{~V}}+\mathrm{n}_{\mathrm{B}} \frac{\mathrm{RT}}{\mathrm{~V}}+\mathrm{n}_{\mathrm{C}} \frac{\mathrm{RT}}{\mathrm{~V}} \quad \mathrm{p}_{\mathrm{tot}}=\mathrm{n}_{\text {tot }} \frac{\mathrm{RT}}{\mathrm{~V}}
\end{gathered}
$$

Pressure \square

- A halothane-oxygen mixture used for anesthesia is placed in a 5.0 L tank at $25.0^{\circ} \mathrm{C}$. You used 15.0 g of halothane vapor and 23.5 g of oxygen. What is the total pressure (in torr) of the gas mixture in the tank? What are the partial pressures (in torr) of the gases? (MW Halothane = $197.38 \mathrm{~g} / \mathrm{mol})$

-To solve:

-Find the total number of moles and solve for $P_{\text {tot }}$

$$
\begin{aligned}
& \underline{15.0 \mathrm{git}_{\mathrm{i}}} \left\lvert\, \frac{1 \mathrm{~mol} \mathrm{H}}{197.38 \mathrm{gh}}=0.076 \mathrm{~mol} \mathrm{H}\right. \\
& \underline{23.5 \mathrm{~g} \mathrm{G}_{2}}
\end{aligned} \frac{1 \mathrm{~mol} \mathrm{O}_{2}}{32.0 \mathrm{~g} \mathrm{G}_{2}}=0.734 \mathrm{~mol} \mathrm{O}_{2} .
$$

$$
\begin{aligned}
& \mathrm{n}=0.076+0.734=0.810 \mathrm{~mol} \\
& \mathrm{~T}=25+273=298 \mathrm{~K} \quad \mathrm{p}=\frac{\mathrm{nRT}}{\mathrm{~V}} \\
& \mathrm{~V}=5.0 \mathrm{~L} \\
& \mathrm{p}=? \\
& \qquad \mathrm{p}=\frac{(0.810 \mathrm{~mol})(0.082)(298 \mathrm{~K})}{(5.0 \mathrm{~L})} \\
& \quad \mathrm{p}_{\text {tot }}=\frac{3.96 \operatorname{sim}}{} \left\lvert\, \frac{760 \mathrm{torr}}{1 \underset{\mathrm{n}}{ }}=3010 \mathrm{torr}\right.
\end{aligned}
$$

- In an experiment, 352 mL of gaseous nitrogen is collected in a flask over water at a temperature of $24.0^{\circ} \mathrm{C}$. The total pressure of the gases in the flask is 742 torr. What mass of N_{2} is collected? (Vapor pressure of water is 22.4 torr)

N_{2} in

$$
\begin{aligned}
& \mathrm{p}_{\mathrm{N}_{2}}=742-22.4=719.6 \text { torr } \\
& 719.6 \text {.arr } \frac{1 \mathrm{~atm}}{760 \text { tr.t }}=0.947 \mathrm{~atm} \\
& \mathrm{~V}=352 \mathrm{~mL}=0.352 \mathrm{~L} \\
& \mathrm{~T}=24+273=297 \mathrm{~K} \\
& \mathrm{n}=\text { ? } \mathrm{n}=\frac{(0.947 \mathrm{~atm})(0.352 \mathrm{~L})}{(0.082)(297 \mathrm{~K})} \\
& \mathrm{n}=0.0137 \mathrm{~mol} \mathrm{~N}_{2} \\
& 0.0137 \mathrm{molin}_{2}^{1} \mathrm{~N}_{2} \left\lvert\, \frac{28.01 \mathrm{~g} \mathrm{~N}_{2}}{1 \mathrm{mcli}_{2}}=0.384 \mathrm{~g} \mathrm{~N}_{2}\right.
\end{aligned}
$$

- end

